Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Chin Herb Med ; 15(3): 463-469, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37538861

RESUMO

Objective: To investigate the chemical constituents from the leaves of Jatropha curcas and evaluate their inhibition on lipopolysaccharide (LPS)-activated BV-2 microglia cells. Methods: The n-BuOH extract of the leaves of J. curcas was isolated by macroporous adsorption resin, silica gel, ODS, column chromatography and semi-preparative HPLC. The structures of the compounds were identified by MS, NMR, ECD, and other spectroscopic methods. In addition, anti-neuroinflammatory effects of isolated compounds were evaluated by measuring the production of nitric oxide (NO) in over-activated BV-2 cells. Results: Seventeen compounds, including (7R,8S)-crataegifin A-4-O-ß-D-glucopyranoside (1), (8R,8'R)-arctigenin (2), arctigenin-4'-O-ß-D-glucopyranoside (3), (-)-syringaresinol (4), syringaresinol-4'-O-ß-D-glucopyranoside (5), (-)-pinoresinol (6), pinoresinol-4'-O-ß-D-glucopyranoside (7), buddlenol D (8), (2R,3R)-dihydroquercetin (9), (2S,3S)-epicatechin (10), (2R,3S)-catechin (11), isovitexin (12), naringenin-7-O-ß-D-glucopyranoside (13), chamaejasmin (14), neochamaejasmin B (15), isoneochamaejasmin A (16), and tomentin-5-O-ß-D-glucopyranoside (17) were isolated and identified. Compounds 2, 4 and 8 significantly inhibited the release of NO in BV-2 microglia activated by LPS, with IC50 values of 18.34, 29.33 and 26.30 µmol/L, respectively. Conclusion: Compound 1 is a novel compound, and compounds 2, 3, 8, 14-17 are isolated from Jatropha genus for the first time. In addition, the lignans significantly inhibited NO release and the inhibitory activity was decreased after glycosylation.

2.
Chinese Herbal Medicines ; (4): 463-469, 2023.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-982515

RESUMO

OBJECTIVE@#To investigate the chemical constituents from the leaves of Jatropha curcas and evaluate their inhibition on lipopolysaccharide (LPS)-activated BV-2 microglia cells.@*METHODS@#The n-BuOH extract of the leaves of J. curcas was isolated by macroporous adsorption resin, silica gel, ODS, column chromatography and semi-preparative HPLC. The structures of the compounds were identified by MS, NMR, ECD, and other spectroscopic methods. In addition, anti-neuroinflammatory effects of isolated compounds were evaluated by measuring the production of nitric oxide (NO) in over-activated BV-2 cells.@*RESULTS@#Seventeen compounds, including (7R,8S)-crataegifin A-4-O-β-D-glucopyranoside ( 1), (8R,8'R)-arctigenin ( 2), arctigenin-4'-O-β-D-glucopyranoside ( 3), (-)-syringaresinol ( 4), syringaresinol-4'-O-β-D-glucopyranoside ( 5), (-)-pinoresinol ( 6), pinoresinol-4'-O-β-D-glucopyranoside ( 7), buddlenol D ( 8), (2R,3R)-dihydroquercetin ( 9), (2S,3S)-epicatechin ( 10), (2R,3S)-catechin ( 11), isovitexin ( 12), naringenin-7-O-β-D-glucopyranoside ( 13), chamaejasmin ( 14), neochamaejasmin B ( 15), isoneochamaejasmin A ( 16), and tomentin-5-O-β-D-glucopyranoside ( 17) were isolated and identified. Compounds 2, 4 and 8 significantly inhibited the release of NO in BV-2 microglia activated by LPS, with IC50 values of 18.34, 29.33 and 26.30 μmol/L, respectively.@*CONCLUSION@#Compound 1 is a novel compound, and compounds 2, 3, 8, 14- 17 are isolated from Jatropha genus for the first time. In addition, the lignans significantly inhibited NO release and the inhibitory activity was decreased after glycosylation.

3.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684476

RESUMO

Two new neolignans jatrolignans, C (1) and D (2), a pair of epimers, were isolated from the whole plants of Jatropha curcas L. (Euphorbiaceae). Their structures were determined with HRESIMS, IR, and NMR data analysis, and electronic circular dichroism (ECD) experiments via a comparison of the experimental and the calculated ECD spectra. Their antichlamydial activity was evaluated in Chlamydia abortus. They both showed dose-dependent antichlamydial effects. Significant growth inhibitory effects were observed at a minimum concentration of 40 µM.


Assuntos
Euphorbiaceae , Jatropha , Lignanas , Jatropha/química , Lignanas/química , Lignanas/farmacologia
4.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35457027

RESUMO

Plant fatty acyl-acyl carrier protein (ACP) thioesterases terminate the process of de novo fatty acid biosynthesis in plastids by hydrolyzing the acyl-ACP intermediates, and determine the chain length and levels of free fatty acids. They are of interest due to their roles in fatty acid synthesis and their potential to modify plant seed oils through biotechnology. Fatty acyl-ACP thioesterases (FAT) are divided into two families, i.e., FATA and FATB, according to their amino acid sequence and substrate specificity. The high oil content in Jatropha curcas L. seed has attracted global attention due to its potential for the production of biodiesel. However, the detailed effects of JcFATA and JcFATB on fatty acid biosynthesis and plant growth and development are still unclear. In this study, we found that JcFATB transcripts were detected in all tissues and organs examined, with especially high accumulation in the roots, leaves, flowers, and some stages of developing seeds, and JcFATA showed a very similar expression pattern. Subcellular localization of the JcFATA-GFP and JcFATB-GFP fusion protein in Arabidopsis leaf protoplasts showed that both JcFATA and JcFATB localized in chloroplasts. Heterologous expression of JcFATA and JcFATB in Arabidopsis thaliana individually generated transgenic plants with longer roots, stems and siliques, larger rosette leaves, and bigger seeds compared with those of the wild type, indicating the overall promotion effects of JcFATA and JcFATB on plant growth and development while JcFATB had a larger impact. Compositional analysis of seed oil revealed that all fatty acids except 22:0 were significantly increased in the mature seeds of JcFATA-transgenic Arabidopsis lines, especially unsaturated fatty acids, such as the predominant fatty acids of seed oil, 18:1, 18:2, and 18:3. In the mature seeds of the JcFATB-transgenic Arabidopsis lines, most fatty acids were increased compared with those in wild type too, especially saturated fatty acids, such as 16:0, 18:0, 20:0, and 22:0. Our results demonstrated the promotion effect of JcFATA and JcFATB on plant growth and development, and their possible utilization to modify the seed oil composition and content in higher plants.


Assuntos
Arabidopsis , Jatropha , Proteína de Transporte de Acila/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Jatropha/genética , Jatropha/metabolismo , Palmitoil-CoA Hidrolase/análise , Palmitoil-CoA Hidrolase/metabolismo , Desenvolvimento Vegetal , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Tioléster Hidrolases/genética
5.
Bioorg Chem ; 122: 105720, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35305482

RESUMO

The ethyl acetate extract of the stems of Jatropha curcas (ESJ) exerted prominent anti-neuroinflammatory effect through inhibiting microglial overactivation, and reducing mRNA expression of inflammatory factors, including nitric oxide (NO), inducible nitric oxide synthase, and interleukin-1ß in the cortex and the formation of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes in C57BL/6 mice. Phytochemical research afforded twenty-three major constituents, including five undescribed components (diterpenes 1-3, 7 and a triterpene 18) and a new natural product [a diterpene, (3S,5S,10R)-3-hydroxy-12-methoxy-13-methylpodopcarpa-8,11,13-trien-7-one (8)], by comprehensive analysis of spectroscopic data. Bioassay showed that ESJ (IC50: 6.49 µg/mL), diterpenes 1, 5, 12, 14, 15, 17, triterpenes 18, 19, preussomerin 22, and lactone 23 (IC50 values from 0.10 to 49.05 µM) inhibited NO production more strongly than the positive control in lipopolysaccharide-stimulated BV-2 cells. HPLC experiment further substantiated that 1, 5, 12, 14-15, 17-19, 22-23 are the characteristic constituents of ESJ, suggesting they might possess the potential for the treatment of neuroinflammation.


Assuntos
Jatropha , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia
6.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216041

RESUMO

The CAPRICE (CPC)-like (CPL) genes belong to a single-repeat R3 MYB family, whose roles in physic nut (Jatropha curcas L.), an important energy plant, remain unclear. In this study, we identified a total of six CPL genes (JcCPL1-6) in physic nut. The JcCPL3, 4, and 6 proteins were localized mainly in the nucleus, while proteins JcCPL1, 2, and 5 were localized in both the nucleus and the cytoplasm. Ectopic overexpression of JcCPL1, 2, and 4 in Arabidopsis thaliana resulted in an increase in root hair number and decrease in trichome number. Consistent with the phenotype of reduced anthocyanin in shoots, the expression levels of anthocyanin biosynthesis genes were down-regulated in the shoots of these three transgenic A. thaliana lines. Moreover, we observed that OeJcCPL1, 2, 4 plants attained earlier leaf senescence, especially at the late developmental stage. Consistent with this, the expression levels of several senescence-associated and photosynthesis-related genes were, respectively, up-regulated and down-regulated in leaves. Taken together, our results indicate functional divergence of the six CPL proteins in physic nut. These findings also provide insight into the underlying roles of CPL transcription factors in leaf senescence.


Assuntos
Antocianinas/biossíntese , Antocianinas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Diferenciação Celular/genética , Expressão Ectópica do Gene/genética , Senescência Vegetal/genética , Regulação da Expressão Gênica de Plantas/genética , Jatropha/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/genética , Tricomas/genética
7.
Int J Biol Macromol ; 195: 433-439, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896468

RESUMO

Osteosarcoma is a kind of primary bone malignant tumors. Its cure rate has been stagnant in the past decade years. Curcin C belongs to type I ribosome inactivating proteins, extracted from the cotyledons of post-germinated Jatropha curcas seeds. It can inhibit the proliferation of several tumor lines including U2OS cells with extraordinary efficiency. The treated U2OS cells were arrested in both S and G2/M phase, showed typical apoptosis morphological characteristic, formed autophagosomes and increase the ratio of LC3II to LC3I. Meanwhile, the level of ROS in the treated cells was found increasing significantly, with the change of mitochondrial membrane potential and decreased antioxidant enzyme activities. The application of ROS scavenger NAC not only significantly inhibited the toxicity of Curcin C but also prevented the happen of apoptosis and autophagy to some extent. These results suggested that Curcin C may function through ROS pathway. In addition, the Curcin C treatment could activate JNK and inhibit ERK signal pathway. Sp600125, an inhibitor of JNK signaling pathway, can prevent subsequent apoptosis and autophagy events, suggesting that JNK pathway was at least one of the pathways of Curcin C action. Moreover, the relevant including antagonistic among autophagy, apoptosis and cell cycle arresting induced by Curcin C also was found. In summary, it can be speculated that Curcin C may induce S, G2/M phase arrest, apoptosis and autophagy of human osteosarcoma U2OS cells through activating JNK signal pathway and blocking ERK signal pathway by promoting ROS accumulation in cell, thus finally reflected in the effect of inhibiting tumor cell proliferation.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Inativadoras de Ribossomos Tipo 1/química , Proteínas Inativadoras de Ribossomos Tipo 1/isolamento & purificação
8.
Biomolecules ; 11(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34680119

RESUMO

Jatropha curcas contains seeds with a high oil content, suitable for biodiesel production. After oil extraction, the remaining mass can be a rich source of enzymes. However, data from the literature describing physicochemical characteristics for a monomeric esterase from the J. curcas seed did not fit the electrostatic catapult model for esterases/lipases. We decided to reevaluate this J. curcas esterase and extend its characterization to check this apparent discrepancy and gain insights into the enzyme's potential as a biocatalyst. After anion exchange chromatography and two-dimensional gel electrophoresis, we identified the enzyme as belonging to the dienelactone hydrolase family, characterized by a cysteine as the nucleophile in the catalytic triad. The enzyme displayed a basic optimum hydrolysis pH of 9.0 and an acidic pI range, in contrast to literature data, making it well in line with the electrostatic catapult model. Furthermore, the enzyme showed low hydrolysis activity in an organic solvent-containing medium (isopropanol, acetonitrile, and ethanol), which reverted when recovering in an aqueous reaction mixture. This enzyme can be a valuable tool for hydrolysis reactions of short-chain esters, useful for pharmaceutical intermediates synthesis, due to both its high hydrolytic rate in basic pH and its stability in an organic solvent.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Jatropha/enzimologia , Modelos Moleculares , Eletricidade Estática , Sequência de Aminoácidos , Análise de Variância , Hidrolases de Éster Carboxílico/química , Domínio Catalítico , Cátions Bivalentes/farmacologia , Esterases/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Ponto Isoelétrico , Proteólise/efeitos dos fármacos , Proteômica , Solventes , Estereoisomerismo , Especificidade por Substrato/efeitos dos fármacos , Temperatura
9.
Plant Biotechnol (Tokyo) ; 38(2): 247-256, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34393603

RESUMO

The development of green energy is important to mitigate global warming. Jatropha (Jatropha curcas L.) is a promising candidate for the production of alternative biofuel, which could reduce the burden on the Earth's resources. Jatropha seeds contain a large quantity of lipids that can be used to produce biofuel, and the rest of the plant has many other uses. Currently, techniques for plant genetic transformation are extensively employed to study, create, and improve the specific characteristics of the target plant. Successful transformation involves the alteration of plants and their genetic materials. The aim of this study was to generate Jatropha plants that can support biofuel production by increasing their seed size using genes found via the rice FOX-hunting system. The present study improved previous protocols, enabling the production of transgenic Jatropha in two steps: the first step involved using auxins and dark incubation to promote root formation in excised shoots and the second step involved delaying the timing of antibiotic selection in the cultivation medium. Transgenic plants were subjected to PCR analysis; the transferred gene expression was confirmed via RT-PCR and the ploidy level was investigated. The results suggest that the genes associated with larger seed size in Arabidopsis thaliana, which were found using the rice FOX-hunting system, produce larger seeds in Jatropha.

10.
J Appl Microbiol ; 130(3): 852-864, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32816375

RESUMO

AIMS: The aims of the study were to (i) improve the evaluation criteria of detoxifying Jatropha curcas L. cake (JCC), (ii) isolate and characterize a JCC tolerant strain, (iii) explore its JCC detoxifying potential. METHODS AND RESULTS: The zebrafish was employed as a survival model to screen the strains capable of detoxifying JCC. A strain identified as Mucor circinelloides SCYA25, which is highly capable of degrading all toxic components, was isolated from soil. Different solid-state fermentation parameters were optimized by response surface methodology. The optimal values for inoculation amount, moisture content, temperature, and time were found to be 18% (1·8 × 106 spores g-1 cake), 66%, 26, and 36 days, respectively, to achieve maximum detoxification of the JCC (92%). Under optimal fermentation conditions, the protein content of JCC was increased, while the concentrations of ether extract, crude fiber, toxins, and anti-nutritional substances were all degraded considerably (P < 0·05). Scanning electron microscopy and Fourier transform infrared spectrometer analysis revealed that the fermentation process could disrupt the surface structure and improve the ratio of α-helix to ß-folding in the JCC protein, which may improve the digestibility when the detoxified JCC is used as a feedstuff. CONCLUSIONS: Our results indicate that M. circinelloides SCYA25 is able to detoxify JCC and improve its nutritional profile, which is beneficial to the safe utilization of JCC as a protein feedstuff. SIGNIFICANCE AND IMPACT OF THE STUDY: The newly identified M. circinelloides SCYA25 detoxified JCC in a safe manner to provide a potential alternative to soybean meal for the feed industry. These results also provide a new perspective and method for the toxicity evaluation and utilization of JCC and similar toxic agricultural by-products.


Assuntos
Jatropha/metabolismo , Mucor/metabolismo , Eliminação de Resíduos/métodos , Microbiologia do Solo , Toxinas Biológicas/metabolismo , Ração Animal/microbiologia , Animais , Biodegradação Ambiental , Fermentação , Jatropha/química , Jatropha/toxicidade , Mucor/isolamento & purificação , Toxinas Biológicas/análise , Toxinas Biológicas/toxicidade , Peixe-Zebra
11.
J Ethnopharmacol ; 264: 113201, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814081

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jatropha curcas L. (Euphorbiaceae), a medicinal plant known in Brazil as "Pinhão Manso", is highly adaptable, being cultivated in different tropical and subtropical regions of the world. Antimicrobial, antioxidant and antiinflammatory activities have been attributed to different parts of the plant. In the central nervous sytem (CNS), neuroinflammation is mediated by glial cells, mainly by astrocytes and microglia, a process that plays an important role in neurodegenerative diseases and other CNS disorders. In this study, we investigated the anti-inflammatory activity of the methanolic extract obtained from the leaves of J. curcas L. (MEJc) in primary cultures of glial cells submited to inflammatory stimulus. MATERIALS AND METHODS: Primary cultures of glial cells obtained from the cerebral cortex of neonate Wistar rats were treated with MEJc (0.1-50,000 µg mL-1) and its fractions (FnJc) (0.1 µg mL-1) with or without lipopolysaccharide of Escherichia coli (LPS) (1 µg mL-1). Cell viability was determined with MTT test. Modifications in glial cell morphology were investigated by means of phase contrast microscopy and May-Grünwald staining. The reactivity of astrocytes and microglia were investigated with immunocytochemistry for GFAP, Iba1 and transcription factor NF-kB, as well as with Greiss reaction to determine the nitric oxide (NO) production. RESULTS: MEJc at 0.1-1000 µg mL-1 was non-toxic to glial cells and the DE50 was 10.794 µg mL-1. The treatment with LPS induced the activation of astrocytes and microglia marked by morphological modifications and changes in the expression of GFAP and Iba1, as well as the increase in NF-kB expression and NO production. Treatment with MEJc inhibited the morphological modifications, changes in GFAP and Iba1 expression, and the increase in NF-kB and NO production induced by LPS. CONCLUSION: This study demonstrates that the MEJc and its fractions modulate inflammatory response of astrocytes and microglia to LPS and may be considered as a potential therapeutic strategy for neuroinflammation-related diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Jatropha , Neuroglia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Encéfalo/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Neuroglia/fisiologia , Extratos Vegetais/isolamento & purificação , Ratos , Ratos Wistar
12.
Plants (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203052

RESUMO

Salinity and drought stress, singly or in combination, are major environmental menaces. Jatropha curcas L. is a biodiesel plant that can tolerate long periods of drought. However, the growth performance and stress tolerance based on physical, chemical, and physiological attributes of this plant have not yet been studied. To address this question, J. curcas seedlings were grown in a completely randomized design in plastic pots filled with soil to evaluate the effects of salinity and drought stresses on growth, ionic composition, and physiological attributes. The experiment consisted of six treatments: control (without salinity and drought stress), salinity alone (7.5 dS m-1, 15 dS m-1), drought, and a combination of salinity and drought (7.5 dS m-1+ Drought, 15 dS m-1+Drought). Our results revealed that, compared with the control, both plant height (PH) and stem diameter (SD) were reduced by (83%, 80%, and 77%) and (69%, 56%, and 55%) under salinity and drought combination (15 dS m-1+Drought) after three, six, and nine months, respectively. There was 93% more leaf Na+ found in plants treated with 15 dS m-1+Drought compared with the control. The highest significant average membrane stability index (MSI) and relative water content (RWC) values (81% and 85%, respectively) were found in the control. The MSI and RWC were not influenced by 7.5 dS m-1 and drought treatments and mostly contributed towards stress tolerance. Our findings imply that J. curcas is moderately tolerant to salinity and drought. The Na+ toxicity and disturbance in K+: Na+ ratio were the main contributing factors for limited growth and physiological attributes in this plant.

13.
Bioengineered ; 11(1): 1146-1158, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33070678

RESUMO

Jatropha curcas is one of oilseed crops and has been considered as an energy crop. In the present study, efficient plant regeneration protocol and transformation method were developed for J. curcas. Because the regeneration efficiency of adventitious bud from cotyledon explants of J. curcas induced by traditional methods is low, and it takes a long time to get complete plants. It is necessary to establish a new regeneration system to improve regeneration efficiency. Cotyledon explants were dipped into TDZ solution at different concentrations respectively for various times to obtain higher efficiency of adventitious bud regeneration. This new regeneration method was then applied to genetic transformation of J. curcas. Cotyledon explants were precultured for 1 day after treated with high concentration of Thidiazuron (TDZ) solution (20 mg/L for 40 min), followed by Agrobacterium tumefaciens infection. After co-cultured for 2 days, the explants were placed on the induction hormone-free media for bud regeneration and resistant screening. After 30 days, selected shoot buds were transferred onto elongation medium for 15 days. Young leaf sections of the regenerated shoots were used for PCR (Polymerase chain reaction) detection of the transgenic shoots. The PCR positive shoots were isolated and used for in vitro grafting. The intact plants were obtained within 20 days. GUS (ß-Glucosidase) staining and Southern analysis confirmed the transformation events. Briefly, a transformation efficiency of 34.32% was achieved and an intact transgenic plant could be obtained within 65 days.


Assuntos
Agrobacterium tumefaciens/metabolismo , Cotilédone/metabolismo , Jatropha/metabolismo , Compostos de Fenilureia/metabolismo , Tiadiazóis/metabolismo , Transformação Genética
14.
Turk J Pharm Sci ; 17(3): 271-279, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32636704

RESUMO

OBJECTIVES: There is an increasing demand for wound healing products of natural origin. Our objective was to develop a spray formulation from Jatropha curcas (J. curcas) L. latex extracts for wound healing applications. MATERIALS AND METHODS: J. curcas L. latex was subjected to solvent extraction. The phytochemical structure was elucidated by 1H-NMR and confirmed by liquid chromatography-mass spectrometer spectrometry. A topical spray formulation prepared from J. curcas latex extracts was evaluated in terms of its antimicrobial activity and radical scavenging activity. The toxicity of the formulation on fibroblast cell lines, collagen production, and wound healing activities were tested. RESULTS: The 1H-NMR and mass spectrometric analyses revealed the pure compound as curcacycline A. The J. curcas latex extract formulation had radical scavenging and antibacterial activities. Moreover, the formulation was not toxic to the human fibroblast cells and it stimulated collagen production and healed cell injury in 24 h. CONCLUSION: The J. curcas latex extract promoted wound healing after cell injury. Our findings indicate the possibility of utilizing the J. curcas latex extract spray formulation as a potential antibacterial, antioxidant, and wound healing product from nature.

15.
Biosci. j. (Online) ; 36(3): 702-712, 01-05-2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1146497

RESUMO

The aluminum in high levels in the soil affects the emergence, growth, and development of various species. Therefore, the objective of this study was to evaluate the emergence and physiological behavior of four provenances of Jatropha curcas subjected to different levels of aluminum. The experiment was performed in a greenhouse in a completely randomized design, with four levels of aluminum in the soil (8.2, 16.5, 24.0 mmolc·dm-3 and control) and four provenances of J. curcas seeds (P1 = Dourados-MS, P2 = Montes Claros-MG, P3 = Alta Floresta-MT, and P4 = Petrolina-PE); the effects of aluminum toxicity were investigated in 25, 50, 75, and 100 days after emergence. The levels of aluminum in the soil were collected from the initial soil correction, which featured an aluminum level of 24.0 mmolc dm-3. The seedling emergence was not affected by treatment with aluminum; however, the height and leaf area of P1, P2, and P3 were reduced with increasing levels of aluminum. The emergence and vigor of J. curcas seeds were not influenced by the differences in the origins of the seeds or by the aluminum levels evaluated. Gas exchanges were affected negatively by aluminum and the responses of the chlorophyll a fluorescence indicate harmful effect in the photosynthetic apparatus. The seeds of origin P4 (Petrolina-PE) has increased tolerance to stress conditions.


O alumínio em níveis elevados no solo afeta a emergência, o crescimento e o desenvolvimento de diversas espécies. Diante disso, o objetivo desse trabalho foi avaliar a emergência e o comportamento fisiológico de quatro procedências de Jatropha curcas submetidas a diferentes níveis de alumínio. O experimento foi conduzido em casa de vegetação, em delineamento inteiramente casualizado, com quatro níveis de alumínio no solo (8,2; 16,5 e 24,0 mmolc dm-3 e o controle) e quatro procedências de sementes de J. curcas (P1 = Dourados-MS P2 = Montes Claros-MG, P3 = Alta Floresta-MT e P4 = Petrolina-PE), e os efeitos da toxicidade do alumínio foram investigados aos 25, 50, 75 e 100 dias após a emergência. A emergência das plântulas não foi afetada pelo tratamento com alumínio; no entanto, a altura e a área foliar de P1, P2 e P3 foram reduzidas com níveis crescentes de alumínio. A emergência e o vigor das plântulas das procedências não foram afetados pelos níveis de alumínio avaliados. A taxa fotossintética, taxa de transpiração e condutância estomática também foram reduzidas quando as plantas foram cultivadas em solo contendo altas níveis de alumínio. As plantas P4 foram menos sensíveis aos níveis crescentes de alumínio.


Assuntos
Solo , Jatropha , Alumínio , Fotossíntese , Análise do Solo , Crescimento e Desenvolvimento , Toxicidade , Clorofila A
16.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963715

RESUMO

Jatropha curcas L. is monoecious with a low female-to-male ratio, which is one of the factors restricting its seed yield. Because the phytohormone cytokinins play an essential role in flower development, particularly pistil development, in this study, we elevated the cytokinin levels in J. curcas flowers through transgenic expression of a cytokinin biosynthetic gene (AtIPT4) from Arabidopsis under the control of a J. curcas orthologue of TOMATO MADS BOX GENE 6 (JcTM6) promoter that is predominantly active in flowers. As expected, the levels of six cytokinin species in the inflorescences were elevated, and flower development was modified without any alterations in vegetative growth. In the transgenic J. curcas plants, the flower number per inflorescence was significantly increased, and most flowers were pistil-predominantly bisexual, i.e., the flowers had a huge pistil surrounded with small stamens. Unfortunately, both the male and the bisexual flowers of transgenic J. curcas were infertile, which might have resulted from the continuously high expression of the transgene during flower development. However, the number and position of floral organs in the transgenic flowers were well defined, which suggested that the determinacy of the floral meristem was not affected. These results suggest that fine-tuning the endogenous cytokinins can increase the flower number and the female-to-male ratio in J. curcas.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Citocininas/metabolismo , Jatropha/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Vias Biossintéticas , Citocininas/genética , Flores/genética , Flores/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Inflorescência , Jatropha/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Regiões Promotoras Genéticas , Reprodução Assexuada
17.
Ecotoxicol Environ Saf ; 185: 109705, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31561080

RESUMO

Acid rain is a global environmental problem. Acid rain can affect plants directly by damaging the leaves and indirectly by soil acidifying. Many studies have been conducted to investigate the impacts of acid rain on plant under a single soil type. However, there is little information on the effect of acid rain on plant under different soil types. Jatropha curcas L. is an energy plant widely distributed in acid rain pollution area with various soil types. In this study, we investigated the effects of acid rain (pH2.5, pH3.5, pH4.5, pH5.6) on the growth, physiology, nutrient elements and bacterial community of J. curcas seedlings under different soil types [Red soils (RS), Yellow soils (YS), Yellow-brown soils (YBS), and Purplish soils (PS)]. Acid rain and soil types significantly influence the growth of J. curcas seedlings, and there was a significant interaction between acid rain and soil types. Acid rain (pH 4.5) was beneficial to the growth of J. curcas seedlings, whereas acid rain (pH 2.5 or 3.5) inhibited growth of J. curcas seedlings. The growth of J. curcas seedlings could resist the stress of acid rain by scavenging and detoxification of active oxygen species in leaves. Combined with the increase in relative growth rate of seedlings treated with simulated acid rain at pH 4.5, we inferred that K can stimulate the growth of seedlings. The lower soil pH, cation exchange capacity and base saturation had stronger inhibitory effects on growth of J. curcas seedlings. YBS and PS were beneficial for growth of J. curcas seedlings by higher buffering capacity under acid rain treatments. The phylum Proteobacteria was found to predominate in rhizosphere soils. YBS was favorable to support Proteobacteria growth and reproduction. The redundancy analysis showed that the Cyanobacteria were favorable to growth of J. curcas seedlings.


Assuntos
Chuva Ácida/toxicidade , Jatropha/efeitos dos fármacos , Plântula/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Chuva Ácida/análise , Poluição Ambiental/análise , Concentração de Íons de Hidrogênio , Jatropha/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Poluentes do Solo/análise
18.
Biology (Basel) ; 8(2)2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31234529

RESUMO

Jatropha curcas L. (2n = 2× = 22) is increasingly attracting attention in the biodiesel industry for its oil. However, the cultivation of J. curcas L. is faced with numerous challenges unlike the cultivation of Ricinus communis L. (2n = 2× = 20), a closely related species. The generation of an intergeneric hybrid between J. curcas L. and R. communis L. was investigated. Intergeneric hybrids were produced by hand crossing. Immature embryos were rescued, in vitro, from the hybrid seeds and cultured on an enriched Murashige and Skoog (MS) medium for a month. The plantlets produced were grown in sterile peat moss in plastic pots and covered with polyethylene for 30 days, after which they were transferred into cement potted soil. The hybridity and the genuineness of the hybrids were successfully confirmed using randomly amplified polymorphic DNA (RAPD) markers. The number of branches, stem diameter, and leaf size of the F1 hybrids were similar to those of J. curcas L. while the plant height was similar to that of R. communis L. Young hybrids were treated with various concentrations (0%, 0.3%, 0.4%, and 0.5%) of colchicine to induce polyploids. The calli (JR6) treated with 0.3% colchicine recorded the highest tetraploid cell percentage (38.89%). A high tetraploid cell percentage (>50%) is significant in overcoming the problem of sterility after hybridization.

19.
J Chromatogr A ; 1597: 63-75, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30885401

RESUMO

Jatropha curcas L. is an inedible plant whose seed oil is an interesting source for biodiesel production. Seed cake, the main byproduct remaining (about 70% w/w) after the oil extraction process, has a high nutritional value but the presence in Jatropha curcas seed of phorbol esters (PEs), a family of toxic compounds with a tigliane skeleton, prevents application of seed cake and other byproducts (e.g. glycerin) in animal feed without an efficient detoxification. Considering the high toxicity of PEs, it is important to have a sensitive analytical method to evaluate the presence of these compounds in Jatropha curcas derivatives. In this paper we present the study of the ESI-MS/MS fragmentation pattern of the [M+Na]+ ion at m/z 733.5 of the six known PEs, namely Jatropha factors (JFs) C1-C6, which allowed to tentatively identify a series of characteristic and specific fragment ions useful to reveal the presence of JFs in Jatropha curcas seed oil, distinguish them from each other, and identify new PEs (J1-J4). Moreover, the substitution of the usual acetonitrile/water as mobile phase with a mixture of methanol/water (85:15, v/v) allowed to increase the signal of the sodium adduct of about 50-fold during the HPLC-ESI-MS/MS analysis.


Assuntos
Ração Animal/efeitos adversos , Cromatografia Líquida de Alta Pressão , Análise de Alimentos/métodos , Ésteres de Forbol/análise , Óleos de Plantas/química , Espectrometria de Massas em Tandem , Ração Animal/análise , Animais , Biocombustíveis , Glicerol/química , Jatropha/química , Sementes/química
20.
Ann Bot ; 124(4): 645-652, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30715120

RESUMO

BACKGROUND AND AIMS: Jatropha curcas (jatropha) is an oil crop cultivated in (sub)tropical regions around the world, and holds great promise as a renewable energy source. However, efforts to fully commercialize jatropha are currently hampered by the lack of genetic diversity in the extant breeding germplasm, and by the toxicity of its seeds meaning that its seed cake cannot be used as a protein source in animal feed, among other constraints. In Mexico, the species' native range, there are jatropha plants whose seeds are used to prepare traditional meals. This non-toxic jatropha 'type' is considered to harbour low genetic variation due to a presumed domestication bottleneck and therefore to be of limited breeding value; yet, very little is known regarding its origin and genetic diversity. METHODS: Using genotyping-by-sequencing (GBS), we extensively genotyped both indigenous toxic and non-toxic jatropha collected along roads and home gardens throughout southern Mexico. KEY RESULTS: Single nucleotide polymorphism diversity in non-toxic jatropha is relatively high, particularly in northern Veracruz state, the probable origin of this germplasm. Genetic differences between toxic and non-toxic indigenous genotypes are overall quite small. A a genome-wide association study supported a genomic region (on LG 8, scaffold NW_012130064), probably involved in the suppression of seed toxicity. CONCLUSIONS: Conservation actions are urgently needed to preserve this non-toxic indigenous, relatively wild germplasm, having potential as a fuel feedstock, animal feed and food source among other uses. More generally, this work demonstrates the value of conservation genomic research on the indigenous gene pool of economically important plant species.


Assuntos
Jatropha , Biocombustíveis , Estudo de Associação Genômica Ampla , México , Polimorfismo de Nucleotídeo Único , Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...